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Abstract

The free vibration eigensolutions of a thin ring on a general elastic foundation are obtained by perturbation and

Galerkin analyses. Natural frequencies and vibration modes are determined as closed-form expressions for a ring having a

circumferentially varying foundation of very general description. The elastic foundation consists of two orthogonal

distributed springs oriented at an arbitrary inclination angle. The foundation stiffnesses vary circumferentially. The simple

eigensolution expressions explicitly show the parameter dependencies, lead to natural frequency splitting rules for

degenerate unperturbed eigenvalues at both first and second orders of perturbation, and identify which nodal diameter

Fourier components contaminate a given n nodal diameter base mode of the free ring. Discrete spring supports are treated

as a special case where the natural frequencies are determined by five parameters: nondimensional spring stiffness, stiffness

angle, support angle, number of springs, and location of the springs. The predicted effects of these parameters on the

natural frequencies are verified numerically. As an application and as the motivating problem for the study, the natural

frequencies and vibration modes of a ring gear used in helicopter planetary gears with unequally spaced planets are

investigated.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Structures having ring geometry are widely used in mechanical systems, such as gears, tires, bearings and
rotors. For some purposes, these structures are modeled as rings with elastic spring connections to the mating
components. This work is motivated by planetary gear systems, where the internal (or ring) gear is an elastic
ring. Ring-planet gear tooth meshes are modeled as elastic springs due to tooth compliance [1,2]. These tooth
meshes are not necessarily equally spaced and are inclined relative to the radial direction as tooth meshing
occurs along the line of action. Planetary gears used in helicopters and aircraft engines usually have thin ring
gears, justifying use thin ring theory. From a power density point of view, the ring gear must be thin to reduce
weight, and a thin ring introduces compliance that improves load sharing among the planets [3–5]. Kahraman
et al. [6] verified the importance of ring gear compliance when they computationally studied the vibration of a
planetary gear used in an automotive transmission.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a stiffness angle
b support angle
e nondimensional stiffness
g modulation angle
n Poisson ratio
yj location of the jth support
r mass density per unit length
t nondimensional time
o nondimensional natural frequencies
E Young’s modulus
Ft tangential force per unit length
Fr radial force per unit length

J area moment of inertia
M11 bending moment
N11 axial force
N number of Galerkin expansion terms
Q13 shear force
K stiffness per unit length
l number of supports
n mode number
r radius of neutral axis
t time
u tangential displacement
u* nondimensional displacement
w radial displacement
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The ring vibration literature contains a variety of approaches for analyzing the influence of supports. Rao
and Sundararajan [7] investigated the natural frequencies and vibration modes of rings on rigid radial
supports by separating the ring into several parts with supports located at the ends of each segment. This
method is cumbersome for cases with many supports. Sahay and Sundararajan [8] developed a method that
can be applied to rings having many springs but with the limitation that cyclic symmetry is required. Many
other methods such as the complementary transfer matrix method [9], transfer matrix method [10,11] and
wave approach [12] have been applied to investigate vibration characteristics of rings on multiple radial
springs supports. Detinko [13] investigated the free vibration of a thick ring on multiple radial springs by the
Galerkin method, where the extension of the neutral axis, shear deformation and rotary inertia are considered.
The effect of these factors on natural frequencies is negligible for thin rings. In Detinko’s paper, the springs do
not have to be equally spaced but need at least one axis of symmetry. Most of the above works restrict their
studies to the problem of rings with discrete radial springs. In this paper, the distributed elastic foundation is
more general.

When a structure deviates from axisymmetry, its natural frequencies and vibration modes can change
significantly. This attracted many researchers to investigate problems of axisymmetric structures with
asymmetric features. The asymmetries may come from manufacturing errors, dimensional variations, material
nonuniformity, or attached masses and springs. Allaei et al. [14] analyzed the natural frequencies and
vibration modes of a ring with radial spring attachments. They formulated the characteristic equation by the
receptance method, obtained natural frequencies from the roots of the characteristic equation, and achieved
mode shapes by the mode expansion method. Yu and Mote [15] studied the effects of radial slots of circular
plates with rotating load and provided a rule for natural frequency splitting in circular plates with equally
spaced, identical radial slots. Tseng and Wickert [16] studied the vibration of an eccentrically clamped annular
plate and pointed out splitting of the degenerate natural frequencies. Parker and Mote [17–19] used
perturbation analysis to investigate the eigensolutions for plate vibration and the wave equation on annular
domains with boundary shape or stiffness variations. Natural frequency splitting rules were generalized to
arbitrary distributed asymmetric deviations. Kim et al. [20] presented a natural frequency splitting rule for
general rotationally periodic structures and investigated the effects of imperfection on both repeated and split
natural frequency modes. A natural frequency splitting rule and a mode contamination rule for axisymmetric
structures with identical, evenly spaced asymmetries were obtained by Chang and Wickert [21,22] when they
studied the vibration of rotationally periodic structures.

This work investigates the dynamic characteristics of rings with asymmetry from an attached elastic
foundation through perturbation and Galerkin methods. General rules of natural frequency splitting and
mode contamination are obtained, and the vibration properties are examined for changes in the major
parameters.
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2. Mathematical formulation

Fig. 1 shows a thin ring with two perpendicular distributed foundations: one has stiffness kdðyÞ and the
other has stiffness keðyÞ, where k is a dimensional stiffness, and dðyÞ and eðyÞ are dimensionless O(1) stiffness
distribution functions. To retain full generality, the foundation at each circumferential location is oriented at
an arbitrary inclination angle b with the radial direction. This permits natural application to planetary gears
where tooth meshing occurs along the line of action defined by the pressure angle, and the ring gear may be
supported on its outside by angled spline teeth. From in-plane force and moment balances of this ring segment
and the constitutive relation, one obtains the equations (Fig. 2)

rr €udy�
qN11

qy
dy�Q13 dy� F trdy ¼ 0, (1)

rr €wdy�
qQ13

qy
dyþN11 dy� Frrdy ¼ 0, (2)

qM11

rqy
¼ Q13; M11 ¼

EJ

1� n2
qu

r2qy
�
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ke(θ)

kd(θ)

u(θ)

O

θ

β

Fig. 1. Ring vibration with elastic foundation.
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Fig. 2. Ring segment.
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where uðy; tÞ is the tangential displacement. The elastic foundation appears through the Fr and Ft terms. For
inextensible in-plane vibration u and w are related by the constraint [23]

qu

qy
þ w ¼ 0. (4)

Eqs. (1)–(4) yield the equation of motion

r
q2

qt2
u�

q2u

qy2

� �
�

EJ

r4ð1� n2Þ
q6u

qy6
þ 2

q4u

qy4
þ

q2u

qy2

� �
¼ Ft þ

qFr

qy
. (5)

The tangential and radial distributed forces Ft and Fr are:

F ¼ �T�1KTx, (6)

F ¼
Ft

Fr

" #
; T ¼

cos b � sin b

sin b cos b

" #
; K ¼

kdðyÞ 0

0 keðyÞ

" #
; x ¼

u

w

� �
. (7)

Introducing dimensionless quantities by the definitions

u� ¼
u

r
; t ¼

t

T
; T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rr4ð1� n2Þ

EJ

r
; f t ¼

r4ð1� n2ÞF t

EJ
; f r ¼

r4ð1� n2ÞFr

EJ
; e ¼

kr3ð1� n2Þ
EJ

, (8)

where e is the dimensionless foundation stiffness, the equation of motion is

Mu�tt þ Lu� þ eL1u
� ¼ 0, (9)

M ¼ 1�
q2

qy2
; L ¼ �

q6

qy6
þ 2

q4

qy4
þ

q2

qy2

� �
; L1 ¼ gþ

dh

dy
� q

q2

qy2
�

dq

dy
q
qy

, (10)

gðyÞ ¼ dðyÞcos2 bþ eðyÞsin2 b, (11)

hðyÞ ¼ ½eðyÞ � dðyÞ� sin b cos b; qðyÞ ¼ dðyÞsin2 bþ eðyÞcos2 b. (12)

The operators L and M are self-adjoint with the inner product ou; v4 ¼
R 2p
0 u~vdy; with � denoting complex

conjugate. In what follows the superscript * on u* is omitted.
2.1. Perturbation method

With the solution uðy; tÞ ! uðyÞeiot; the eigenvalue problem of (9) is

Lu� o2Mu ¼ �eL1u. (13)

When the foundation stiffness is small compared to the ring bending stiffness, eoo1; the perturbed
eigensolutions un and o2

n are represented as asymptotic expansions in e:

un ¼ ūn þ evn þ e2Zn þOðe3Þ, (14)

o2
n ¼ ō2

n þ eln þ e2gn þOðe3Þ. (15)

Substitution of Eqs. (14) and (15) into Eq. (13) generates the sequence of perturbation problems

Lūn � ō2
nMūn ¼ 0, (16)

Lvn � ō2
nMvn ¼ �L1ūn þ lnMūn, (17)

LZn � ō2
nMZn ¼ �L1vn þ lnMvn þ gnMūn. (18)
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The bending natural frequencies ōn of a free ring are degenerate with multiplicity two. These and the
associated n nodal diameter unperturbed eigenfunctions that satisfy Eq. (16) are

ōn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðn2 � 1Þ2

n2 þ 1

s
; ūn;1 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1þ n2Þ

p einy; ūn;2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1þ n2Þ
p e�iny, (19)

where oūn;i; Mūn;j4 ¼ dij . The general unperturbed eigenfunction ūn of Eq. (16) is a linear combination of
ūn;1 and ūn;2:

ūn ¼ an;1ūn;1 þ an;2ūn;2 (20)

where an;1 and an;2 are determined subsequently to ensure continuous change in un of Eq. (14) as e! 0. For
the self-adjoint problems (17) and (18) the solvability conditions are

o� L1ūn þ lnMūn; ūn;i4 ¼ 0; i ¼ 1; 2, (21)

o� L1vn þ lnMvn þ gnMūn; ūn;i4 ¼ 0; i ¼ 1; 2. (22)

With the normalization condition oMun; un4 ¼ 1, Eq. (20) and the solvability conditions (21) form the
algebraic eigenvalue problem

Dan ¼ lnan, (23)

D ¼
1

1þ n2

g0 þ n2q0 g2n þ i2nh2n � n2q2n

g�2n � i2nh�2n � n2q�2n g0 þ n2q0

" #
; an ¼

an;1

an;2

 !
. (24)

where gm, hm and qm in Eq. (24) are from the Fourier expansions

gðyÞ ¼
X1

m¼�1

gme
imy; hðyÞ ¼

X1
m¼�1

hme
imy; qðyÞ ¼

X1
m¼�1

qme
imy, (25)

gm ¼ dm cos2 bþ emsin
2 b; hm ¼ ðem � dmÞ sin b cos b; qm ¼ dmsin

2bþ emcos
2b, (26)

and dm, em are the complex Fourier coefficients of dðyÞ and eðyÞ. D is Hermitian. Solution of the eigenvalue
problem for D gives the first-order eigenvalue perturbations in Eq. (14) as

ln;1

ln;2
¼

1

1þ n2
d0ðcos

2bþ n2sin2bÞ þ e0ðsin
2bþ n2cos2bÞ

� �
�

1

1þ n2
d2nðcos b� in sin bÞ2 þ e2nðsin bþ in cos bÞ2
�� ��. ð27Þ

If D has distinct eigenvalues ln;1aln;2, the degenerate unperturbed eigenvalues split. The two eigenvectors an

in Eq. (24) are then determined following the normalization oMun; un4 ¼ 1. This establishes an,1 and an,2 for
each mode (20) of the split natural frequencies, and the unperturbed eigenfunctions ūn are determinate at the
first order. If D has repeated eigenvalues ln;1 ¼ ln;2, however, the perturbed eigenvalues do not split at this
order of perturbation, any an satisfies Eq. (24), and the unperturbed eigenfunctions ūn in Eq. (20) remain
indeterminate.

The n nodal diameter natural frequencies split at first order if the second term of Eq. (27) is nonzero;
otherwise they remain repeated. Obviously, the n nodal diameter natural frequencies remain repeated for
d2n ¼ e2n ¼ 0. If one or both of d2n and e2n are non-zero, the natural frequencies split at first order except when
d2n and e2n satisfy

d2nðcos b� in sin bÞ2 þ e2nðsin bþ in cos bÞ2 ¼ 0. (28)

In these cases (an example is given later), the natural frequencies split if either of the individual distribution are
present separately but remain repeated with both distributed springs acting simultaneously.

Repeated and split natural frequencies experience different influence from the asymmetry. The impact
on some of the split natural frequencies is larger than on the repeated natural frequencies. The sum of the
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first-order eigenvalue perturbations for an arbitrary eigenvalue pair is

ln;1 þ ln;2 ¼ 2 d0ðcos
2bþ n2sin2bÞ þ e0ðsin

2bþ n2cos2bÞ
� �

=ð1þ n2Þ. (29)

For a split natural frequency pair, one natural frequency changes less than eðln;1 þ ln;2Þ=ð4ōnÞ, and the other
one changes more. A limit case is a ring having equally spaced supports with one spring in each support. In
that case, the natural frequency change is maximal for one split natural frequency while it is zero for the other.
Natural frequencies that remain repeated always change by eln;1=ð2ōnÞ ¼ eln;2=ð2ōnÞ.

The first-order eigenfunction perturbation vn governed by Eq. (17) is expanded as a series of the complete
unperturbed eigenfunctions

vn ¼
X1

s¼�1

rn;se
isy ¼

X1
s¼�1;sa�n

rn;se
isy þ rn;ne

iny þ rn;�ne
�iny. (30)

Substituting Eq. (30) into Eq. (17) and forming the inner product of Eq. (17) with eimy yields

rn;s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

2p

r
Cn;sðPn;san;1 þ P�n;san;2Þ; Cn;s ¼

1

ð1þ n2Þðō2
n � ō2

s Þð1þ s2Þ
; sa� n, (31)

Pn;s ¼ ds�nðcos bþ in sin bÞðcos b� is sin bÞ þ es�nðsin b� in cos bÞðsin bþ is cos bÞ. (32)

The coefficients rn,n and rn,�n remain indeterminate from this process because the inner product of the left
and right sides of Eq. (17) with e�iny vanish (one must use lnan ¼ Dan from Eq. (23) to show the right sides
vanishes). Indeed, rn,n and rn,�n are governed by the normalization condition oMūn; vn4 ¼ 0 as

an;1rn;n þ an;2rn;�n ¼ 0. (33)

For eigenvalues that split at first order, rn,n and rn,�n are determined by Eq. (33) and the solvability conditions
(22) of the second-order perturbation equation (18). These equations form the Hermitian algebraic problem

�Pn;n þ ð1þ n2Þln �P�n;n

ffiffiffiffiffiffiffiffi
1þn2

2p

q
an;1

�Pn;�n �Pn;n þ ð1þ n2Þln

ffiffiffiffiffiffiffiffi
1þn2

2p

q
an;2ffiffiffiffiffiffiffiffi

1þn2

2p

q
an;1

ffiffiffiffiffiffiffiffi
1þn2

2p

q
an;2 0

2
666664

3
777775

rn;n

rn;�n

gn

2
64

3
75 ¼

P
sa�n

Ps;nrn;sP
sa�n

Ps;�nrn;s

0

2
6664

3
7775, (34)

Because an,1 and an,2 are known when the eigenvalues split at first-order perturbation, two solutions for rn,n,
rn,�n and gn are obtained from Eq. (34) for the two eigensolutions of Eq. (23).

For eigenvalues that remain degenerate at first order, an,1 and an,2 are arbitrary. This and Eq. (33) yield
rn;n ¼ rn;�n ¼ 0. The solvability conditions of Eq. (22) generate an algebraic eigenvalue problem for gn:

Ean ¼ gnan, (35)

E ¼

P1
s¼�1;sa�n

Cn;sPn;sPs;n
P1

s¼�1;sa�n

Cn;sP�n;sPs;n

P1
s¼�1;sa�n

Cn;sPn;sPs;�n

P1
s¼�1;sa�n

Cn;sP�n;sPs;�n

2
6664

3
7775, (36)

where Ps,n is the complex conjugate of Pn,s. The eigenvalues of Eq. (36) yield the second-order eigenvalue
perturbations gn:

gn ¼
X1

s¼�1;sa�n

Cn;s Pn;s

�� ��2 � X1
s¼�1;sa�n

Cn;sP�n;sPs;n

�����
�����. (37)

The properties of P�n;sPs;n, which is governed by the foundation’s Fourier coefficients dm and em, dictate
whether the natural frequencies split at second-order perturbation. The properties of P�n;sPs;n for identical,
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equally spaced discrete supports are obtained in Appendix A; these guarantee that all eigenvalues that are
degenerate at first order remain degenerate for higher order perturbations.

The closed-form eigenfunction approximation is

un ¼ an;1ūn;1 þ an;2ūn;2 þ e
X1

s¼�1

rn;se
isy. (38)

Because of asymmetry from the circumferentially varying elastic foundation, the vibration modes no longer
consist of pure n nodal diameter sinusoidal variations as they do for a free ring. The base n nodal diameter
mode (or unperturbed eigenfunction (20)) is contaminated by additional nodal diameter components. The last
term in Eq. (38) governs how the elastic foundation introduces s nodal diameter contaminants into an
unperturbed n nodal diameter base mode. The coefficients rn,s in Eq. (31) determine the presence and
magnitude of each contaminant for given base mode and asymmetric foundation e(y) and d(y). These
contaminants can change the dynamic characteristics, and especially the forced response, dramatically. The
mode contamination rule states: an n nodal diameter base mode will be contaminated with the s nodal
diameter component if s satisfies

s� n ¼ p, (39)

where p is any index (positive or negative) of nonzero complex Fourier coefficients for either of the foundation
stiffness distribution functions d(y) and e(y). The s nodal diameter component will disappear, however, for the
unusual case where one or more of ds7n and es7n are nonzero but occur such that rn;s ¼ 0. The ascending
sequence of all nodal diameter components for a given n nodal diameter base mode is called the contamination
sequence for that mode.

2.2. Galerkin method

An alternative solution spatially discretizes Eq. (9) by expanding u as a series of basis functions
uðy; tÞ ¼

PN
n¼NUnðtÞeiny. Galerkin discretization yields

ð1þ n2Þ €Un þ n2ðn2 � 1Þ2Un þ e
XN

m¼�N

½gm þ nðn�mÞqn þ imhm�Um ¼ 0. (40)

The matrix form of Eq. (40) and the associated eigenvalue problem are

M €Uþ ðWþ kÞU ¼ 0; �o2MvþðWþ kÞv ¼ 0, (41)

M ¼ diag½1þ n2�; W ¼ diag½n2ðn2 � 1Þ2�, (42)

lnþNþ1;mþNþ1 ¼ e½gm þ nðn�mÞqn þ imhm�; m; n ¼ �N; . . . ;N. (43)

For identical, equally spaced springs with no inclination (b ¼ 0), one has

dðyÞ ¼ sin a
Xl

i¼1

dðy� ciÞ; eðyÞ ¼ cos a
Xl

i¼1

dðy� ciÞ. (44)

ci ¼ 2pði � 1Þ=l; i ¼ 1; . . . ; l, (45)

where a is a stiffness angle that can be varied to change the relative stiffness between d(y) and e(y). In this case
Eq. (40) simplifies to

ð1þ n2Þ €Un þ n2ðn2 � 1Þ2Un þ
e
2p

XN

m¼�N

Umðsin aþmn cos aÞ
Xl

i¼1

eiðm�nÞy ¼ 0; m; n ¼ �N ; . . . ;N. (46)

For a planetary ring gear, b is no longer zero. Each ring-planet gear tooth mesh with pressure angle j is
modeled as a single spring with a ¼ p=2 and b ¼ p=2� j.
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3. Method validation

Fig. 3 shows the natural frequencies of a ring with four equally spaced radial springs obtained by
perturbation and Galerkin discretization. For a wide range of nondimensional spring stiffness e, the natural
frequencies match well with differences less than 1%.

The vibration of free rings having two identical, equally spaced springs has been investigated by prior
researchers [10–13]. The problem is briefly considered to confirm the accuracy and convergence of the
numerical method. Table 1 gives the natural frequencies of a ring having two radial springs located at 0 and p.
The results with N ¼ 50 are compared with those of Ref. [10], where N is the number of Galerkin expansion
terms. Some natural frequencies, such as o2,o4,o6, match very well for a wide range of e, but others do not.
When the radial springs are identical and equally spaced there always exist some natural frequencies that are
independent of spring stiffness due to all the springs being located at nodes of these modes. They are also
0
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Fig. 3. Natural frequencies of rings having four equally spaced radial springs. The symbols denote values calculated by the Galerkin

method; solid lines denote results from perturbation.

Table 1

Nondimensional natural frequencies of a ring with two identical, equally spaced, radial springs compared to values from Ref. [10]

e 1 nodal diameter 2 nodal diameter 3 nodal diameter

o1 o1 [10] o2 o2 [10] o3 o3 [10] o4 o4 [10] o5 o5 [10] o6 o6 [10]

0 0 — 0 — 2.6833 — 2.6833 — 7.5895 — 7.5895 —

0.1 0 — 0.1783 0.1779 2.6833 4.3843 2.6928 2.6928 7.5895 9.6542 7.5932 7.5933

1 0 — 0.5609 0.5610 2.6833 4.3843 2.7762 2.7762 7.5895 9.6542 7.6273 7.6283

10 0 — 1.6854 1.6854 2.6833 4.3845 3.4792 3.4792 7.5895 9.6615 7.9702 7.9706

100 0 — 3.6071 3.6071 2.6833 4.3844 6.5267 6.5279 7.5895 9.6449 10.935 10.915

600 0 — 4.2364 4.2359 2.6833 4.3845 8.9087 8.9090 7.5895 9.6511 15.868 —

N 0 — 4.3844 4.385* 2.6833 — 9.6519 9.657* 7.5895 — 17.922 —

For e!1, results with * come from Ref. [13]. Note: (–) means no result is provided. n ¼ 0 is assumed, so that e is the same as in Ref. [10].
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Table 2

Nondimensional natural frequencies of a ring with three identical, equally spaced radial springs compared to values from Ref. [13]

e 1 nodal diameter 2 nodal diameter 3 nodal diameter

o1 o1 [13] o2 [13] o3, o4 o3 [13] o4 [13] o5 o5 [13] o6 o6 [13]

0 0 0 0 2.6833 2.683 2.683 7.5895 7.589 7.5895 7.589

1 0.4750 0.4750 0.6012 2.7555 2.755 2.804 7.5895 7.589 7.6458 14.57

10 1.1871 1.187 1.330 3.4329 3.432 3.872 7.5895 7.589 8.1304 14.71

100 1.5855 1.586 1.606 6.9712 6.973 7.795 7.5895 7.589 11.614 16.08

1000 1.6378 1.638 1.640 9.9941 10.00 10.15 7.5895 7.589 19.605 19.61

N 1.6437 1.644 1.644 10.465 10.47 10.47 7.5895 7.589 20.296 20.30

X. Wu, R.G. Parker / Journal of Sound and Vibration 295 (2006) 194–213202
natural frequencies of the free ring. As revealed in Table 1, large discrepancies occur exactly for these natural
frequencies. For instance, 2.6833 and 7.5895 are the two and three nodal diameter natural frequencies of a free
ring without springs, as expected. In Ref. [10], however, the corresponding values are incorrectly given as
4.3843 and 9.6542, which are natural frequencies for two rigid radial springs (see o2 and o4 for e!1). The
present results agree well with known results and previous research [13] for two special cases: one case is
e! 0, which corresponds to rings with no springs; the other is e!1, which corresponds to rigid springs.

Natural frequencies of a ring with three identical, equally spaced radial springs are shown in Table 2 with
comparisons to results in Ref. [13]. Many values agree well, although differences arise due to splitting of
degenerate (repeated) natural frequencies. Published research about axisymmetric structures with identical,
equally spaced asymmetries [14–18,20,22,24–26] ensure the following natural frequency splitting rule holds:
when the nodal diameter n and the number of supports l satisfy n ¼ ml=2 for even l or n ¼ ml for odd l

(m ¼ 1,2,3y), then the degenerate natural frequencies split. The natural frequency splitting behavior for the
present solution in Table 2 obeys this rule. When l ¼ 3 the first and second pairs of natural frequencies are
repeated, and the third pair of natural frequencies splits. Results in Ref. [13] violate this rule.
4. Vibration of rings with identical, equally spaced springs

The distributed elastic foundation modeled in this study encompasses a broad range of possibilities. Discrete
spring supports are of primary interest because this work is motivated by planetary gear systems, where the
ring gear is an elastic ring acted on by discrete ring-planet mesh stiffnesses.
4.1. Perturbation solution

For identical, equally spaced springs with no inclination (b ¼ 0), the stiffness distribution functions are
governed by Eq. (44). The Fourier coefficients of d(y), e(y) are

dm ¼
0

l sin a=ð2pÞ
;

(
em ¼

0; m=laint;

l cos a=ð2pÞ; m=l ¼ int:

(
(47)

Two cases must be considered depending on the relationship between the base nodal diameter and the number
of equally spaced springs.

Case 1: 2n=lainteger. Substituting Eq. (47) into Eq. (27), the first-order eigenvalue perturbations are
repeated:

ln;1 ¼ ln;2 ¼
lðsin aþ n2 cos aÞ

2pð1þ n2Þ
. (48)
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The eigenvalues do not split at the first order perturbation. The eigenvectors an of D are arbitrary unit vectors.
Substitution of Eq. (48) into Eqs. (30) and (31) yields the first-order eigenfunction perturbations

vn ¼
l

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

2p

r X�1
m¼�1

an;1Cn;mlþn sin aþ ðnþmlÞn cos a½ �eiðmlþnÞy	
þ an;2Cn;ml�n sin aþ ðn�mlÞn cos a½ �eiðml�nÞy
, ð49Þ

where an,1 and an,2 are arbitrary. The second-order eigenvalue perturbations are obtained from the same
substitution into Eq. (37):

gn ¼
X�1

m¼�1

l2

4p2
Cn;mlþn sin aþ ðml þ nÞn cos a½ �

2. (50)

Note that the second-order eigenvalue perturbation is calculated even though vn in Eq. (49) is not fully
determined as an is an arbitrary unit vector. The eigenvalues do not split at the second order either. In fact, the
eigenvalues associated with the n nodal diameter base mode will not split at any order of perturbation for rings
on equally spaced springs when 2n=la integer, as shown in Appendix A.

Case 2: 2n/1 ¼ integer. The eigenvalues split at the first-order. The eigensolutions at first order are

ln;1 ¼
l sin a

pð1þ n2Þ
; ln;2 ¼

n2l cos a
pð1þ n2Þ

; an;1 ¼

ffiffiffi
2
p

2

1

1

� �
; an;2 ¼

ffiffiffi
2
p

2

�1

1

� �
. (51)

Substitution of Eqs. (51) and (31) into Eq. (34) yields rn;n ¼ rn;�n ¼ 0 for each split mode. In using Eq. (47) to
reduce Eqs. (31) and (34) for this case, note that ðs� nÞ=l ¼ integer if and only if ðsþ nÞ=l ¼ integer. The
eigensolutions are

vn;1 ¼
X1

m¼�1;ma0;�2n=l

sin a
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p

r
Cn;mlþnleiðmlþnÞy, (52)

vn;2 ¼
X1

m¼�1;ma0;�2n=l

l cos a
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p

r
Cn;mlþn ðml þ nÞneiðmlþnÞy, (53)

gn;1 ¼
X1

m¼�1;ma0;�2n=l

l2 sin a
2p2

Cn;nþml ½sin aþ ðml þ nÞn cos a�, (54)

gn;2 ¼
X1

m¼�1;ma0;�2n=l

l2 cos a
2p2

Cn;mlþnðml þ nÞn½sin aþ ðml þ nÞn cos a�. (55)

These expressions show the relationships between parameters and eigensolutions, which is convenient for
modal analysis, system identification, response analyses and design.

The nonzero Fourier coefficient indices for equally spaced springs are integer multiples of the number of
springs. Substitution of this into the general contamination rule (39) yields the mode contamination rule for
rings having equally spaced springs:

s� nj j ¼ ml; m ¼ 1; 2; 3; . . . . (56)

This rule is consistent with the mode contamination rule in previous works where discrete, equally spaced
attachments are added to an axisymmetric structure [20–22]. The magnitude of each contaminating
component is evident from Eqs. (49), (52) and (53).

Substitution of Eqs. (19) and (30) into Eq. (38) gives the expression for un:

un ¼ ðan;1 þ an;2Þ
X1

s¼1;san

As cos syþ cos ny

" #
þ iðan;1 � an;2Þ

X1
s¼1;san

Bs sin syþ sin ny

" #
, (57)
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As ¼ �e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

2p

r
Cn;sðPn;s þ Pn;�sÞ; Bs ¼ �e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

2p

r
Cn;sðPn;s � Pn;�sÞ. (58)

For repeated natural frequencies (2n=laint), an are arbitrary unit vectors, and Eq. (57) is an arbitrary linear
combination of the expressions in square brackets. Thus, one can regard the terms in the first square brackets
as one mode of the degenerate pair and terms in the second square brackets as the other mode. For split
natural frequencies, the two an are determinate, but substitution (separately) of an ¼

ffiffiffi
2
p

=2 1; 1ð Þ
T and

an ¼
ffiffiffi
2
p

=2 1; �1ð Þ
T from Eq. (51) into Eq. (57) also yields the bracketed expressions in Eq. (57) as the modes.

Thus, the bracketed expressions in Eq. (57) are the two vibration modes associated with the base n nodal
diameter mode, regardless of whether the springs split the degenerate natural frequency. One mode is called
the cos ny mode and has only cosine components, while the other is called the sin ny mode and has only sine
components.

The distinction between the cases of splitting and no splitting lies in the properties of As and Bs, the
coefficients of the contaminating components for the cos ny and sin ny modes. For no splitting of
the degenerate unperturbed eigenvalues, the condition 2n=laint guarantees n� s and �n� s cannot
simultaneously be integer multiples of l because their difference is 2n. This and Eq. (32) ensure either Pn;s or
Pn;�s is zero. Therefore, if s� n ¼ ml ðPn;�s ¼ 0Þ, then As ¼ Bs. In contrast, if sþ n ¼ ml ðPn;s ¼ 0Þ, then
As ¼ �Bs. One of these two conditions holds. This structure of the base and contaminating Fourier
coefficients for repeated natural frequencies does not hold when the natural frequencies split because both of
Pn,s and Pn,�s are nonzero in Eq. (58).

As an example, the mode contamination properties are considered for a ring with five identical, equally
spaced springs. Fig. 4(a) depicts the Galerkin method Fourier coefficients for the three nodal diameter mode,
where the natural frequencies do not split. The mode contamination rule (57) is confirmed with the
contaminants s ¼ 2; 7; 8; 12; 13 . . .. Furthermore, the coefficients As and Bs satisfy As ¼ Bs for s� n ¼ ml and
As ¼ �Bs for sþ n ¼ ml, as predicted by perturbation. In contrast, Fig. 4(b) shows the contamination
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(As) denotes the mode having cosine components, white& (Bs) denotes the mode having sine components. (a) three nodal diameter modes;

(b) five nodal diameter modes.
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behavior of the five nodal diameter split natural frequency modes. Both the sine and cosine components of the
fifth mode are contaminated by s ¼ 0; 10; 15; 20; . . ., but their magnitudes are different, as predicted. There is a
special case for modes with split natural frequencies: when the discrete supports are uniform, equally spaced
radial springs, only the cos ny split modes are contaminated; the sin ny split modes are associated with natural
frequencies that are independent of the supports, so they have no contamination. On the contrary, cos ny
modes have no contamination for uniform, equally spaced tangential springs.

From ðō2
s � ō2

nÞ in the denominator of Eq. (31), the amplitude of a particular mode contamination
component depends on the proximity s� nj jof the contaminating nodal diameter s to the base nodal diameter
n. For repeated modes, the contaminations are prominent because the nodal diameters s of the contaminating
components can be close to n. For split natural frequencies on, however, the difference between s and n

satisfies s� nj j � l, so rn,s is relatively small. Therefore, in what may seem a counter-intuitive result, split
modes are less contaminated compared to repeated modes even though they have greater natural frequency
change.

4.2. Mode classification for rings having identical, equally spaced spring supports

As shown in Appendix a for the case of identical, equally spaced spring supports, the natural frequency
splitting rule does not change for the second or higher order perturbations. In other words, if a degenerate
natural frequency does not split at first order, it does not split at any order. A similar conclusion exists for the
mode contamination rule; the sets of nodal diameter components present in Eqs. (49), (52) and (53) do not
change for the entire range of e40. The modes of a ring having equally spaced springs are classified into
distinct and degenerate modes as reduced from Eqs. (49), (52) and (53).

The distinct modes have distinct natural frequencies and reduce from Eqs. (52) and (53). They evolve from
the n nodal diameter free ring modes where 2n=l ¼ integer: They are linear combinations of the ml nodal
diameter components, where m ¼ 0; 1; . . . ;1 :

ðunÞ1 ¼
X1
m¼0

Un
ml;1 cos mly; ðunÞ2 ¼

X1
m¼0

Un
ml;2 sin mly; n ¼ 0; l; 2l; . . . . (59)

One such pair of modes exists for every n ¼ 0; l; 2l; . . ., where n indicates the dominant nodal diameter
component (as it does for the mode types to follow). These modes exist for even or odd l. For even l, a second
pair of modes, each with distinct natural frequency, exists for every n ¼ 1=2; 3l=2; 5l=2; . . .:

ðunÞ1 ¼
X1
m¼0

Un
mlþðl=2Þ;1 cos ml þ

l

2

� �
y; ðunÞ2 ¼

X1
m¼0

Un
mlþðl=2Þ;2 sin ml þ

l

2

� �
y; n ¼

l

2
;
3l

2
;
5l

2
; . . . . (60)

All split natural frequency modes are of the form (59) or (60). For example, with l ¼ 4, representative modes
of the form (59) and (60) are

ðu4Þ1 ¼ U4
0;1 þU4

4;1 cos 4yþU4
8;1 cos 8yþ . . . , (61)

ðu2Þ1 ¼ U2
2;1 cos 2yþU2

6;1 cos 6yþU2
10;1 cos 10yþ . . . . (62)

The degenerate modes have degenerate frequencies and reduce from Eq. (49). They evolve from the n nodal
diameter free ring modes where 2n=lainteger, which implies that n can be written as n ¼ jl þ s

�� ��, where j is an
arbitrary integer and s is one of the integers belonging to ½1; intððl � 1Þ=2Þ�. For a given s in this range, these
degenerate modes are arbitrary linear combinations of the following two independent modes:

ðunÞ1 ¼
X1

m¼�1

Un
mlþs cosðml þ sÞy; ðunÞ2 ¼

X1
m¼�1

Un
mlþs sinðml þ sÞy; n ¼ s; l � s; 2l � s; . . . . (63)

with l ¼ 4, representative modes of the form (63) are

u1 ¼ c1 U1
1 cos yþU1

�3 cos 3yþU1
5 cos 5yþU1

�7 cos 7yþ . . .
� �
þ c2 U1

1 sin y�U1
�3 sin 3yþU1

5 sin 5y�U1
�7 sin 7yþ . . .

� �
, ð64Þ



ARTICLE IN PRESS
X. Wu, R.G. Parker / Journal of Sound and Vibration 295 (2006) 194–213206
u3 ¼ c1 U3
1 cos yþU3

3 cos 3yþU3
5 cos 5yþU3

7 cos 7yþ . . .
� �
þ c2 �U3

�1 sin yþU3
3 sin 3y�U3

�5 sin 5yþU3
7 sin 7yþ . . .

� �
, ð65Þ

where c1 and c2 are arbitrary.
When each support has only one spring (a ¼ 0 or p/2), some of the distinct modes have only a single nodal

diameter component. These are called ring modes. Their natural frequencies are the same as for the
corresponding nodal diameter mode for a free ring. When each support has only one tangential spring (a ¼ 0),
the modes governed by the first of Eqs. (59) and (60) devolve into the ring modes

ðunÞ1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ n2Þ
p cos ny;

n ¼ l; 2l; . . . for odd l;

n ¼ l=2; l; 3l=2; . . . for even l:
(66)

Similarly, when each support has only one radial spring (a ¼ p=2), the modes governed by the second of Eqs.
(59) and (60) devolve into the ring modes

ðunÞ2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ n2Þ
p sin ny;

n ¼ l; 2l; � � � for odd l;

n ¼ l=2; l; 3l=2 ; � � � for even l:
(67)

Of all split modes of a ring having identical, equally spaced supports with one spring at each support, half are
ring modes and the others are modes of the form (un)1 (a ¼ p=2) or (un)2 (for a ¼ 0) governed by Eqs. (59)
and (60).

4.3. Effect of support number

Fig. 5 shows the relationship between natural frequencies and number of supports obtained by the Galerkin
method. All natural frequencies are degenerate for the free ring, and they all split for one or two springs. Fig. 5
confirms the natural frequency splitting rule for rings with l equally spaced springs: when the nodal diameter n

and the number of supports l satisfies n ¼ ml=2 for even l or n ¼ ml for odd l (m ¼ 1,2,3,y), then the natural
frequencies split; otherwise they do not. For split modes, the split modes with smallest nodal diameter (m ¼ 1)
have the largest difference between split natural frequencies. For a given l, the maximum discrepancy between
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split natural frequencies occurs for n ¼ 1=2 for even l and n ¼ l for odd l. For a given n nodal diameter mode,
the maximum difference between split natural frequencies always occurs for l ¼ 2n.

4.4. Effect of stiffness

The natural frequencies and vibration modes of rings on radial springs were investigated by Allaei et al. [14],
which is a special case of the present model with a ¼ p=2; b ¼ 0. In this paper, radial springs, tangential
springs and their combination are considered. As an example, the dynamic characteristics of a ring with four
elastic springs are presented. Fig. 6 shows the natural frequency dependence on stiffness for equally spaced
radial or tangential springs (b ¼ 0). There is a range for each mode where the associated natural frequency is
sensitive to spring stiffness, whether radial or tangential. The number of supports l determines the sensitivity
of each mode (as discussed in Fig. 5). Comparison of the dashed and solid lines for the same mode shows that
tangential stiffness and radial stiffness dominate in different ranges. For small stiffness, the effect of radial
springs is stronger than that of tangential springs, while tangential springs are more dominant for high
stiffness. For purely radial springs, a rigid body rotational mode (n ¼ 0) always exists. When the supports
have tangential components, this natural frequency is no longer zero, and its mode shape is contaminated with
other nodal diameter modes according to Eq. (56).

As seen in Fig. 6, some natural frequency loci cross each other while others veer away. For example, the loci
(solid line) of n ¼ 3 and 5 veer away as they approach each other. This is because the three and five nodal
diameter modes have the same mode components as they both contain 1,3,5,7,y nodal diameter components,
which creates strong coupling of the two modes in the veering region.

Fig. 7 reveals the effects of stiffness on vibration modes from the Galerkin solution. The first eight modes
are shown for four identical, equally spaced radial springs with e ¼ 10; 100; 1000. The vibration modes for
e ¼ 1000 are close to the modes of a ring with rigid springs. Vibration modes with repeated natural frequencies
are always heavily contaminated by other numbers of nodal diameters, much more so than for split natural
frequency modes, as predicted by perturbation. The contamination is the same for each mode in a repeated
natural frequency pair, while a split natural frequency pair has different contamination in each split mode.
When the supports are radial springs, one split mode is exactly the free ring vibration mode with no
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contamination (see Fig. 7(c, g)), while the other mode suffers significant mode contamination (see Fig. 7(d, h)),
as predicted by perturbation.

For rings with equally spaced tangential or radial springs, each natural frequency is bounded in a specific
range as the stiffness increases. The upper bound of natural frequency is determined by the mode
contamination sequence for the chosen mode. For a given n nodal diameter base mode, if the contamination
sequence is y,n,p,y, then the natural frequency is bounded according to

ōn � onoōp, (68)

where ōn and ōp are the n and p nodal diameter natural frequencies for a free ring and on is the corresponding
natural frequency of a ring with equally spaced springs. In the above example with l ¼ 4, the natural
frequencies are bounded as: ō0 � o0oō4; ō1 � o1oō3; ō2 � o2oō6; ō3 � o3oō5; and so on.

5. Vibration of rings on unequally spaced spring supports

The ring gear of a planetary gearset with unequally spaced planets can be modeled as a ring with several
unequally spaced spring supports. Ring-planet gear tooth meshes are modeled as elastic springs due to tooth
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compliance. As a concrete example of a ring with unequally spaced spring supports, the dynamic
characteristics of the ring gear in a US Army OH-58 Kiowa helicopter planetary gear are studied. Ring gear
parameters and material properties are listed in Table 3. The mesh stiffnesses between the planets and the ring
gear are modeled as four unequally spaced springs located at y1 ¼ 0; y2 ¼ 32p=63; y3 ¼ p and y4 ¼ 95p=63
with a ¼ p=2 and b ¼ 90	 � 24:6	, where 24.61 is the pressure angle. The mesh stiffness is k ¼ 3:237

107 N=m and the ring bending stiffness is kbend ¼ EJ=r3ð1� n2Þ ¼ 6:0025
 105 N=m; so the nondimensional
mesh stiffness is e ¼ 53:9279. The dimensional natural frequencies are found from odim ¼ 1266:8o .

When the springs are unequally spaced, the natural frequencies and vibration modes change significantly.
Table 4 compares natural frequencies for the unequally and equally spaced cases. All natural frequencies split
for rings with asymmetric springs. The modes are shown in Fig. 8. The first two modes shown in Fig. 8
correspond to the two nodal diameter base mode with contamination from the 0, 4, 6, y nodal diameter
components.
Table 4

Comparison of dimensionless natural frequencies for an elastic ring with four equally and Unequally spaced springs with e ¼ 53:9279

Natural frequency o1 o2 o3 o4 o5 o6 o7 o8

Unequally spaced 2.1469 2.6952 3.1769 3.3201 7.2362 9.2249 9.4470 14.5577

Equally spaced 2.1560 2.6833 3.2477 3.2477 7.2401 9.3367 9.3367 14.5521

Unequally spaced springs are located at y1 ¼ 0; y2 ¼ 32p=63; y3 ¼ p and y4 ¼ 95p=63.

Table 3

Ring gear parameters and material properties of OH-58

Mass 2.35 kg Bending stiffness k ¼ 3:237
 107 N/m

Ring radius r ¼ 0.014415m Young’s Modulus E ¼ 2:0717
 1011 N/m

Ring thickness h ¼ 0.01551m Poisson’s ratio n ¼ 0:3
Face width b ¼ 0.0254m Pressure Angle 24.61

�2 = 2.6952 �3 = 3.1766 �4 = 3.3199

�5 = 7.2354 �6 = 9.2246 �7 = 9.4465 �8 = 14.5577

�1 = 2.1467

Fig. 8. Modes of a ring on four unequally spaced springs with a ¼ p=2; b ¼ 65:4	, and e ¼ 53:9279. Unequally spaced springs are located

at y1 ¼ 0; y2 ¼ 32p=63; y3 ¼ p, and y4 ¼ 95p=63.
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In planetary gears with unequally spaced planets, planet pairs typically lie on diameters, although these
diameters are not equally spaced. This is done for load sharing and bearing force considerations. For four
planets, the locations of the planets can be represented as y1 ¼ 0; y2 ¼ p=2þ g y3 ¼ p; y4 ¼ 3p=2þ g with g
being a modulation of the equally spaced springs. The influence of modulation g on natural frequencies is
shown in Fig. 9. When g ¼ �p=2, the system is equivalent to rings having two equally spaced springs (the
stiffness is doubled at each support). When g ¼ 0, the equally spaced case is recovered. According to the
natural frequency splitting rule of rings on equally spaced springs, two loci for each of n ¼ 1,3,y meet at
g ¼ 0, which corresponds to repeated natural frequencies. As the modulation g changes from �p/2 to p=2 the
loci of the n nodal diameter base natural frequency pair cross n times.
6. Vibration of rings on distributed elastic foundation

A distributed elastic foundation is an appropriate model in certain rotor/stator systems or bearings.
Consider the foundation stiffness distributions

dðyÞ ¼ 1þ 1
4
cos yþ 1

4
sin yþ sin 4y� 1

3
cos 6y; eðyÞ ¼ 1

4
dðyÞ, (69)

with b ¼ 0. Fourier expansion of d(y) ensures that only d0,d1,d4,d6 and their complex conjugates are nonzero.
The Fourier coefficients of e(y) have the same properties. The set of nontrivial Fourier coefficient indices is
U ¼ f0;�1;�4;�6g:Natural frequency splitting properties at the first and second orders are shown in Table 5.
Natural frequencies split at the first order for n ¼ 3 because 2n 2 U. For n ¼ 2, the natural frequency pair
splits at first order if either of the individual distribution is considered because 2n 2 U, but it remains repeated
with both dðyÞ and eðyÞ acting simultaneously due to d4 � 4e4 ¼ 0. Thus, the combined effects of d(y) and e(y)
neutralize the individual effects. Natural frequencies split at second order for n ¼ 1; 2; 4; 5; 6 due to
P�n;sPs;na0 for certain number of s, such as when n ¼ 1 and s ¼ �5, or when n ¼ 4 and s ¼ 0, both n – s and
�n – s belong to U. Natural frequencies do not split at either order for n46. According to the mode
contamination rule (39), the s nodal diameter components contaminate the n nodal diameter vibration mode
for all s satisfying s� n 2 U.
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Table 5

Natural frequency splitting for rings having the elastic foundations in Eq. (69).

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n � 6

bn R S R R R R

gn S S S S R

S denotes split natural frequencies, and R denotes repeated natural frequencies.
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7. Conclusions

The eigensolutions of rings on a general elastic foundation are derived through perturbation and Galerkin
analyses. The main conclusions are
�
 Closed-form expressions for the natural frequencies and vibration modes of rings on a general elastic
foundation are formulated through perturbation. This includes discrete and distributed foundations that
vary circumferentially in radial, tangential, or inclined orientations.

�
 The natural frequency splitting and mode contamination rules are obtained in general, compact forms

involving the Fourier coefficients of the elastic foundation stiffness distribution functions. Splitting of the n

nodal diameter natural frequency at first-order rule is determined by whether or not the 2nth Fourier
coefficients of the foundation vanish. The n nodal diameter mode of the free ring will be contaminated with
an s nodal diameter component if s� n ¼ p for any non-zero pth coefficient in the foundation’s Fourier
expansion.

�
 For rings with identical, equally spaced springs, all modes are described in closed-form. The effects of the

number of springs, spring stiffness, and location of the springs are studied. The influence of the springs on
vibration modes is more significant for repeated modes than split modes, while the effect on natural
frequencies is more significant for split modes than repeated modes.

�
 For rings with two sets of orthogonally oriented distributed springs, the combined effects may neutralize

the effects of the individual foundations on certain modes.

Appendix A. Eigensolution properties of rings with identical, equally spaced spring supports

We are interested in the natural frequency splitting and mode contamination rules at higher order
perturbations for a ring having identical, equally spaced spring supports. The eigensolutions are in terms of Q

order perturbations

o2
n ¼ ō2

n þ
XQ

j¼1

ejsn;j ; un ¼ ūn þ
XQ

j¼1

ejjn;j. (A.1)

Substitution of Eq. (A.1) into the eigenvalue problem (13) and collection of like powers of e give

Ljn;j � ō2
nMjn;j ¼ �L1jn;j þ

Xj

m¼1

sn;mMjn;j�m; j ¼ 1; 2; . . . ;Q. (A.2)

The natural frequency splitting rule and the mode contamination rule has been obtained at first order
perturbation. When 2n=l ¼ int;the natural frequencies split at the first order; when 2n=laint, the natural
frequencies remain repeated at first order. The eigensolutions of the second-order perturbation are governed
by Eqs. (34) and (37). For 2n=laint; n� s and �n� s cannot simultaneously be integer multiples of l because
their difference is 2n. This and (47) indicate

ds�nd�s�n ¼ 0; ds�ne�s�n ¼ 0; es�ne�s�n ¼ 0. (A.3)
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Letting f 1
¼ dðyÞ and f 2

¼ eðyÞ, Eq. (A.3) is written in a simple form as

f i
s�n f j

�s�n ¼ 0; i; j ¼ 1; 2. (A.4)

According to Eq. (A.4), P�n;sPs;n ¼ 0 for all s, so the natural frequencies do not split at second order. The
second-order eigenfunction perturbation jn;2 (Zn in the main text) is

jn;2 ¼ Zn ¼
X

ta�n

X
sa�n

rn;sPste
ity

ð1þ t2Þðō2
n � ō2

t Þ
, (A.5)

where rn,s and Pst are defined in Eqs. (31) and (32). Eq. (A.5) yields the same mode contamination rule as Eq.
(56).

The solvability conditions of the third order perturbation yield

sn;3an ¼

P
ta�n

P
sa�n

c3Pn;sPs;tPt;n
P

ta�n

P
sa�n

c3P�n;sPs;tPt;nP
ta�n

P
sa�n

c3Pn;sPs;tPt;�n

P
ta�n

P
sa�n

c3P�n;sPs;tPt;�n

2
64

3
75an, (A.6)

c3 ¼
Cn;s

ð1þ t2Þðō2
t � ō2

nÞ
, (A.7)

where Cn,s is defined in the second of Eq. (31). The two diagonal terms in Eq. (A.6) are identical and real, and
the two off diagonal terms are complex conjugate. Consequently,

sn;3 ¼
X

ta�n

X
sa�n

c3Pn;sPs;tPt;n �
X

ta�n

X
sa�n

c3P�n;sPs;tPt;�n

�����
�����. (A.8)

One can prove that s� n; t� s and �t� n cannot simultaneously be integer multiples of l for 2n=laint. A
similar equation as Eq. (A.3) is obtained:

f i
s�n f j

t�s f k
�t�n ¼ 0; i; j; k ¼ 1; 2. (A.9)

Thus, the second term of Eq. (A.8) vanishes, and the natural frequencies remain repeated at third order.
Comparison of Eqs. (37) and (A.8) indicates that the eigenvalue expressions have the same pattern. For each
higher order of perturbation, the number of the summation increases by one. Thus, one can anticipate the
eigenvalue expression for the Qth order perturbation:

sn;Q ¼
X

ta�n

X
sa�n

� � �
X

wa�n

X
ya�n

cM Pn;sPs;t � � �Pw;yPy;n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q

�
X

ta�n

X
sa�n

� � �
X

ya�n

cM Pn;sPs;t � � �Pw;yPy;�n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q

�������
�������. (A.10)

Similarly, one can show that

f i
s�n f j

t�s � � � f
o
y�w f z

�y�n ¼ 0; i; j; . . . ; o; z ¼ 1; 2. (A.11)

Eq. (A.11) guarantees that the second term of Eq. (A.10) vanishes, so the natural frequencies are still
repeated at the Qth order of perturbation for 2n=laint. The natural frequency splitting rule obtained from
the first order holds for any order of perturbation. Similar conclusion can be drawn for the mode contami-
nation rule.
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